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Abstract

The dynamic behavior of inelastic structures during an earthquake is a complicated non-stationary process that is affected by the ran-
dom characteristics of seismic ground motions. The conventional Fourier analysis describes the feature of a dynamic process by decom-
posing the signal into infinitely long sine and cosine series, which loses all time-located information. However, both time and frequency
localizations are necessary for the analysis of an evolutionary spectrum of non-stationary processes. In this paper, an analytical approach
for seismic ground motions is developed by applying the wavelet transform, which focuses on the energy input to the structure. The pro-
cedure of identification of the instantaneous modal parameters based on the continuous wavelet transform (CWT) is given in detail. And
then, a novel method using the auto-regressive moving average (ARMA), called ‘‘prediction extension”, is presented to remedy the edge
effect during the numerical computation of the CWT. The effectiveness of the method is verified by the use of the benchmark model devel-
oped by the American Society of Civil Engineers (ASCE). Finally, a scale model with three-storey reinforced concrete frame-share wall
structure is made and tested on a shaking table to investigate the relation between the dynamic properties of structures and energy accu-
mulation and its change rates during the earthquake. The results have shown that the wavelet transform is able to provide a deep insight
into the identity of transient signals through time-frequency maps of the time variant spectral decomposition.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

The rapid development of the global urban landscape
continues to propel buildings to new heights and spans,
enhancing the role of structural engineers in assuring a safe
and habitable built environment [1]. Among all the natural
disasters, the earthquake is one of the most serious ones. It
brings tremendous economic losses and deaths of people,
as well as the enormous effects on the harmonious and con-
tinuous development of society. For example, there were
earthquake disasters in Los Angeles, USA, in 1994 (61

fatalities and 40 billion US dollars in losses); Kobe, Japan,
in 1995 (over 6400 fatalities and 100 billion US dollars in
losses); Kocaeli, Turkey, in 1999 (over 15,000 fatalities
and 20 billion US dollars in losses); Athens, Greece, in
1999 (143 fatalities and 2 billion US dollars in losses); Tai-
wan, China in 1999 (over 2300 fatalities and 9 billion US
dollars in losses) [2]; and Wenchuan, China in 2008. The
collapse and failure of these deficient structures caused
increasing concern for the structural integrity, durability
and reliability. An earthquake usually leads to stiffness
and strength deterioration of a structure at a global level.
When the visual inspection of structural elements in a
building is unfeasible or the appearance of damage is not
obvious, estimating and correlating such degradations with
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meaningful and descriptive damage assessment (e.g. safe,
lightly damaged, damaged, critically damaged) forms the
basis for making suitable repair decisions on the damaged
structure. In such cases, the time histories of recorded exci-
tation and response during the earthquake event are usu-
ally used for reliable post-earthquake estimation of local
and global damage in the structure [3–6].

It is well known that the dynamic behavior of an inelastic
structure during an earthquake is a complex non-stationary
process that is affected by the random characteristics of
ground motions not only in the frequency domain but also
in the time domain. Thus, the structural safety under the
earthquake cannot be estimated by the energy spectra that
are only defined in the frequency domain. For example,
the Hachinohe motions recorded during the Tokachi-Oki
earthquake in 1968 and the JMA-Kobe motions recorded
during the Hyogoken-Nanbu earthquake in 1995, which
are of oceanic type and epicentral type, respectively, have
the same Fourier amplitudes; in other words, the same total
energy inputs at the vicinity of the 1.0 s period. But they
exhibited a considerable difference in destructiveness to
the structures with a 1.0-s natural period in such a way that
the epicentral motions having a larger rate of energy input
in the time domain can knock down the structures more
devastatingly than the oceanic type motions [7]. As the
inability of the conventional Fourier analysis preserves
the time dependence, new analytical methods are required
to describe the evolutionary spectral characteristics of
non-stationary processes in both frequency and time
domains. Among the most commonly used time-frequency
methods are the Wigner-Ville and Gabor representations.
Yet, these approaches also suffer from several drawbacks.
The Wigner-Ville transform shows spurious interference
phenomena due to the quadratic form of the transformation
[8]. The Gabor transform, although taking advantage of
optimal time-frequency localization according to Heisen-
berg’s uncertainty principle, suffers from the drawback of
having fixed windows; a disadvantage common to all win-
dowed Fourier transforms [9].

The wavelet transform is a new method to analyze sig-
nals, which overcomes the problems that other signal pro-
cessing techniques exhibit. The main advantage gained by
using the wavelet transform is the ability to perform the
local analysis of a signal, i.e. to zoom in any interval of
time or space. Wavelet analysis is thus capable of revealing
some hidden aspects of the data that other signal analysis
techniques fail to detect. Thereby, this property is particu-
larly important for damage detection of structures. More-
over, due to the availability of a fast transform version,
the computational effort to perform the signal transforma-
tion is reduced. Because of these features, the wavelet
transform is proposed as a promising new method for dam-
age identification in structures. This paper presents an ana-
lytical method of seismic ground motions focusing on the
energy input to structures, which can transform the sequen-
tial data in a time domain such as earthquake acceleration
records to the spectral data in both time and frequency

domains with the adaptive windows. Moreover, it describes
the application of the CWT method to frequency-modu-
lated signals with a description of the general theoretical
background; and proposes a new method to overcome
the problem posed by the edge effect.

2. Theoretical background of wavelet transforms

In a nutshell, the wavelets are the localized waves with a
zero average value that drops to zero after a few oscilla-
tions. General reviews of wavelet theory may be referred
to Chui [10] and Daubechies [11]. The wavelet transform
includes the continuous wavelet transform (CWT) and dis-
crete wavelet transform (DWT). The main advantage of the
CWT is its ability to provide the information simulta-
neously in time and scale with adaptive windows. The
CWT offers promising tools for the estimation of modal
parameters and new perspectives for damage identification
of the structures. Two main features make the CWT partic-
ularly attractive. Firstly, the vibration modes can be auto-
matically decoupled in most cases where the natural
frequencies are not too close, which allows for an accurate
extraction of the instantaneous frequencies and damping
parameters. Secondly, the essential information is con-
tained in a small subset of the CWT, namely in the maxima
lines and ridges.

Suppose that the function x(t) satisfies the following
condition:
Z 1

�1
jxðtÞj2 dt <1 ð1Þ

which implies that x(t) decays to zero at ±1. Then, the
CWT can be defined as

W ða; tÞ ¼ 1
ffiffiffi

a
p

Z þ1

�1
xðsÞg � s� t

a

� �

dt ð2Þ

where � denotes the complex conjugate. The dilation by the
scale, a, inversely proportional to the frequency, represents
the periodic or harmonic nature of the signal. The resulting
wavelet coefficient, W(a, t), means a measurement of the
similitude between the dilated/shifted parent wavelet and
the signal at time t and scale (frequency) a. The normaliza-
tion by the root of scale insures that the integral energy gi-
ven by the wavelet is independent of the dilation. These
observations describe the multi-resolution property of the
wavelet transform (see Fig. 1).

The function g(t) qualifies for analyzing the wavelet
when it satisfies the admissibility condition:

Cg ¼
Z þ1

�1

jGðf Þj2

jf j df <1 ð3Þ

where G(f) is the Fourier transform of g(t). This is neces-
sary for obtaining the inverse of the wavelet transform gi-
ven by

xðtÞ ¼ 1

Cg

Z þ1

�1

Z þ1

�1
W ða; tÞ 1

ffiffiffi

a
p g�

t � s
a

� � dads
a2

ð4Þ
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The time-frequency localization derived from g(t) may be a
window function, which additionally means
Z 1

�1
jgðtÞjt <1 ð5Þ

In practice, some regularity and smoothness on the wavelet
function are also required.

The calculation of the wavelet transform can be expe-
dited in the frequency domain through the use of the Fou-
rier transforms. Thus, the convolution in Eq. (2) can
equivalently be represented as a product in the Fourier
domain with Fourier frequency, f,

W ða; tÞ ¼
ffiffiffi

a
p Z 1

�1
bX ðf ÞbG�ðaf Þei2pft df ð6Þ

where bX and bG are the Fourier transform of the signal and
the parent wavelet, respectively.

There are a number of different complex- and real-val-
ued functions that are used as analyzing wavelets [12]. In
many cases, the so-called progressive wavelet function is
used, which is a complex-valued function that satisfies the
admissibility condition and does not have any negative fre-
quencies. One of the most widely used functions in the
wavelet analysis is the Morlet wavelet defined by

gðtÞ ¼ eix0t � e�t2=2 ð7Þ

Essentially, the Morlet wavelet in Eq. (7) is a Gaussian-
windowed Fourier transform with sines and cosines oscilla-
tion at the central frequency, f0 (x0 = 2pf0). The Morlet
wavelet is equivalently localized in the frequency domain,
as evidenced by the Fourier transform of the dilated Morlet
wavelet

Gðaf Þ ¼
ffiffiffi

2
p

ffiffiffi

p
p

e�2p2ðaf � f0Þ2 ð8Þ

For the Morlet wavelet, there is a unique relationship be-
tween the dilation parameter of the transform, a, and the

Fourier frequency, f, on which the wavelet is focused. This
relationship is evident by maximizing Eq. (8) to yield

a ¼ f0=f ð9Þ

3. Wavelet modal extraction technique

3.1. Ridges and skeletons of wavelet transform

The wavelet-based system identification from the
impulse response function and free vibration response is
made on the development of the complex analytical signal,
taking the form of an exponential function given by

zðtÞ ¼ AðtÞei/ðtÞ ð10Þ
where A(t) and /(t) are the time-varying amplitude and
phase, respectively. Therefore, the concept of instanta-
neous frequency as the time-varying derivative of the phase
is

f ðtÞ ¼ 1

2p
d

dt
/ðtÞ ð11Þ

Thus, the phase of the complex-valued analytical function
provides a simple method to identify the time-varying fre-
quency of the system. In the case of free vibration decaying
curves, the oscillator responds at the damped natural fre-
quency xD, and the time-varying amplitude term takes
the form of an exponential, decaying based on the system
natural frequency xn = 2pfn and damping n (xD � xn, for
lightly damped systems):

zðtÞ ¼ ðA0e�nxntÞeiðxDtþhÞ ð12Þ
where A0 is the initial amplitude value and h denotes the
phase shift. Note that this complex analytical signal would
typically be generated by

zðtÞ ¼ xðtÞ þ iH ½xðtÞ� ð13Þ
where x(t) means the original signal and H[�] represents the
Hilbert transform.

The square of the modulus of the wavelet transform can
be interpreted as an energy density distribution over the
(a,b) time-scale plane. The energy of a signal is mainly con-
centrated on the time-scale plane around the ridges of the
wavelet transform [13]. These locations where the fre-
quency of the scaled wavelet coincides with the local fre-
quency of the signal are denoted by

arðbÞ ¼
x0

/0ðbÞ ¼
2pf0

fiðbÞ
ð14Þ

where /
0
(b) implies the derivative of the phase and x0 (or

f0) is the central frequency of the parent wavelet, i.e. the
frequency on which the Fourier transform of the parent
wavelet focuses. Note that Eq. (14) illustrates that the
scales corresponding to the ridges, ar, can be directly used
to identify the instantaneous frequency. The wavelet coeffi-
cients along these ridges form the wavelet skeleton.

Fig. 1. Comparison of four different transformations.
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The wavelet transform is a linear representation of a sig-
nal. Thus, it follows that for a given N functions xi and N

complex values ai (i = 1,2, � � � ,N)

ðW g

X

N

i¼1

aixiÞða; bÞ ¼
X

N

i¼1

aiðW gxiÞða; bÞ ð15Þ

This property is convenient for the analysis of multi-com-
ponent signals.

In the simplest structural identification problem of free
vibration or impulse response, the system has a distinguish-
able enveloped sinusoidal behavior given by

hðtÞ ¼ A0e�nxnt cosðxn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2

q

tÞ ¼ A0e�nxnt cosðxDtÞ ð16Þ

where A0 is the initial displacement condition, and h repre-
sents the phase shift. The analytical signal is then

zðtÞ ¼ A0e�nxntþixDt ð17Þ

The amplitude function is given by

AðtÞ ¼ jzðtÞj ¼ A0e�nxnt ð18Þ

with phase described by

/ðtÞ ¼ \zðtÞ ¼ xDt ð19Þ

Thus, the damped natural frequency can be determined
from the derivative of the phase. Assuming a lightly
damped system, where xD � xn, the damping can be deter-
mined from Eq. (18).

3.2. Edge effect theory

Despite the good results obtained with the CWT, the
edge effect was found to be cumbersome for relatively short
signals. For the Morlet wavelet, the use of a Gaussian win-
dow on the Fourier basis functions makes the precise def-
inition of temporal duration impractical. The time and
frequency resolutions of the Morlet wavelet are given by

Dti ¼
1
ffiffiffi

2
p f0

fi
ð20Þ

and

Df ¼ fi

2p
ffiffiffi

2
p

f0

ð21Þ

As for large-scale civil engineering structures, such as sky-
scrapers, long-span suspension and cable-stayed bridges,
high industrial chimneys and TV-towers, the frequencies
are low. From Eq. (20), it can be seen that the time win-
dows of the wavelet needs to be elongated at these regions.
At both ends of the signal less than Dti, the part wavelet
function outside the signal makes the incomplete wavelet
transform, i.e. the edge effects. Thus, the resultant wavelet
coefficients in these regions have questionable accuracy,
and are very disadvantageous for signal reconstruction.
The edge effect has been studied in a variety of research
areas, such as in weather analysis [14], geodesy [15], and
mechanics [16]. The cone-of-influence [17], also known as

the radius-of-trust (time-width of the edge-effect), was al-
ready qualitatively characterized [18]. Kijewski and Kare-
em [17] used a simple padding scheme to meliorate the
edge-effect. Padding is one of the simplest methods of
meliorating the edge-effect. There are also other methods
for reducing the edge-effect: zero padding, value padding,
decay padding, repeating the signal and reflecting the signal
[19]. However, these classical methods cannot ensure the
continuity of the phase, and its feature on the edge is in
doubt.

3.3. Edge effect melioration: prediction extension

Here, a novel method that adopts the auto-regressive
moving average (ARMA) model to extend the time series
beyond the actual time span is presented (see Fig. 2). In
fact, this procedure predicts the values of the time series
beyond both ends based on the existing information, which
need not add any spurious information on the original time
series. The extended region, being an extension of the
actual signal in that location, preserves the locale spectral
contents, permitting the end effects to consume the surro-
gate values while leaving the actual signal undamaged.
The wavelet coefficients obtained from these augmenta-
tions can then simply be neglected in the analysis, and
the true signal is maximally analyzed by the wavelet. Com-
pared with formal methods, the approach has good conti-
nuity at both ends of the signal and preserves the frequency
and bandwidth characteristics of the signal.

If a data set with time series can be fit into an ARMA
model, it can be described as follows:

xt � /1xt�1 � � � � � /pxt�p ¼ at � h1at�1 � � � � � hqat�q ð22Þ

where p and q are the orders of the AR and MA operator,
/i (i = 1,2, � � � ,p) and hj (j = 1,2, � � � ,q) denote the coeffi-
cients of the AR and MA operator, respectively, and at

means the white noise sequence.
In Eq. (22), there are (p + q + 1) unknown parameters,

/1,/2, � � � ,/p, h1,h2, � � � ,hq and at. Here, the least square

Fig. 2. Schematic demonstration of the prediction extension based on the
ARMA model.
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method is used to estimate the values. The orders of model
could be calculated by the mathematical statistics method
or information criterion. And A-information criterion
(AIC) is adopted since it considers the degree of closeness
between the fitted model and original data. In addition, it
takes into account the number of undetermined parameters
in the model. Hence, it is the best model when the criterion
function reaches an extremely small one.

Then, the formula of prediction can be obtained accord-
ing to the model formula, where x̂tðLÞ is the future L step
value after the time t, x̂tðiÞ ¼ xtþi ði � 0Þ, then

x̂tðLÞ ¼

P

p

i¼1

uix̂iðL� iÞ �
P

q�L

j¼0

hLþjat�j; L � q

P

p

i¼1

uix̂tðL� iÞ; L > q

8

>

>

>

<

>

>

>

:

ð23Þ

4. A numerical example

To better understand the sensitivity of the methods to
various kinds of problems, the American Society of Civil
Engineers (ASCE) developed a benchmark model [20].
The structure shown in Fig. 3 is a four-storey, two-bay
by two-bay steel frame scale model in the Earthquake Engi-
neering Research Laboratory at the University of British
Columbia (UBC). It has a dimension of 2.5 m � 2.5 m in
plan and 3.6 m in height. The columns and floor beams
are modeled as the Euler–Bernoulli beams in both finite
element models. The braces are bars with no bending stiff-
ness. It is a 12-DOF shear-building model that constrains
all degrees except two horizontal translations and one rota-
tion per floor. The finite element models, by removing the
stiffness of various elements, can simulate damage to the
structure. Fig. 4 illustrates node numbering in the finite ele-
ment model. The excitations are applied to each floor,

which are modeled as the filtered Gaussian white noise pro-
cesses passing through the sixth-order low-pass Butter-
worth filter with a 100 Hz cutoff, and the sampling
frequency is 1000 Hz. The response of the structure in the
Y direction at node 41 is selected, and then the structural
free vibration response can be obtained by the random dec-
rement technique (RDT) [21], as shown in Fig. 5(b).

The resultant scalogram and wavelet ridge are provided
in Fig. 6, in which the ridges are straight lines because the
simulated system is a linear system. Note that both the sca-
logram and the wavelet ridge isolate the involved frequency
bands, but more precisely in the form of ridges. Fig. 7(a)
manifests a rounded hump, very evident in the three
modes; and the end effects at low frequencies leave little
useable signal for a reliable system identification. The pre-

Fig. 3. Schematic drawing of the benchmark model.

Fig. 4. Node and element numbering in the FE model.

Fig. 5. Simulated acceleration result of node 41 and its RDT signal.
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diction extension method is used in Fig. 7(b), revealing the
marked improvement in the initial region of the signal. The
damping may be identified through a linear fitting to the
natural log of the wavelet amplitude along the ridges sepa-

rately. In the case of a nonlinear system, a piecewise anal-
ysis is necessary to capture time-varying dynamic
properties. The identified results are listed in Table 1.

5. Shaking table test and data analysis

From the results discussed above, it can be easily seen
that the two main features make the CWT particularly
attractive for the diagnosis of special events in structural
behavior during an earthquake excitation. Firstly, the
vibration modes can be automatically decoupled in most
cases where the natural frequencies are not too close,
allowing for an accurate extraction of the instantaneous
frequencies and damping parameters. Secondly, essential
information is contained in a small subset of the CWT,
namely in the maxima lines and ridges. Any changes in fre-
quency content, e.g. the initiation of stiffness degradation,
sudden occurrence of a non-ductile event, energy exchange
between modes through response coupling, or pounding
between structural components can be identified by the sca-
logram. Here, the relation between the dynamic properties
of structures and energy accumulation and its change rates
is studied by a scale model of a three-storey reinforced con-
crete (RC) frame-share wall structure.

5.1. Energy principles

From the Wavelet transform, the scalogram of energy
distribution may be generated by the squaring modulus
of the transform. This representation, analogous to the
spectrogram, represents the energy content of the signal
at distinct time and frequency (scale) pairs; while the
energy distribution in the scalogram is a multi-resolution:

SGða; bÞ ¼ jW ða; bÞj2 ð24Þ

The mean wavelet spectrum can be estimated by the inte-
gration over the time variable as discussed in Ref. [22],
which may be expressed as follows for a signal with finite
duration T:

SwtðaÞ ¼
2

Cg

1

T

Z T

0

SGða; bÞdb
� �

ð25Þ

The energy accumulations in the frequency domain, de-
noted by E(f), are determined by an integral operation at
each frequency of the mean wavelet spectrum through the
following expression:

Fig. 6. Wavelet scalogram and wavelet ridge.

Table 1
Results of parameter diagnosis from the benchmark model.

Frequency (Hz) Error (%) Damping ratio Error (%)

ASCE Wavelet ASCE Wavelet

First mode 9.41 9.2586 1.609 0.01 0.0101 1
Second mode 25.60 25.4085 0.748 0.01 0.0100 0
Third mode 38.85 38.4877 0.933 0.01 0.0105 5
Fourth mode 48.37 48.0098 0.745 0.01 0.0103 3

Fig. 7. Real component of the wavelet skeleton. (a) Original results; (b)
treated results.
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EðfiÞ ¼
Z fi

f1

SWT ðf0=f Þdf for i ¼ 1; 2; � � � n ð26Þ

Similarly, a time analog to the mean wavelet spectrum may
be defined by

SWT ðbÞ ¼ �
Z fn

f1

SGðf0=f ; bÞdf ð27Þ

Energy accumulations in the time domain, denoted by E(t),
are then appropriately determined by

EðbjÞ ¼
Z bj

b1

SWT ðtÞdb for j ¼ 1; 2; � � �m ð28Þ

Each change rate of these accumulation measures with re-
spect to frequency or time is denoted by, respectively,
dE(f)/df or dE(t)/dt, and the maximum values of these
accumulation rates will be of particular interest in subse-
quent discussions as they identify the arrival of significant
events in the time and frequency domains.

5.2. Model design

The experiment was carried out with the earthquake
simulator facility in the State Key Laboratory of Coastal
and Offshore Engineering, Dalian University of Technol-
ogy, China. The facility includes a 4 m � 3 m steel plat-
form, driven by servo-hydraulic actuators and an MTS
analog electronic control system, which makes fine feed-
back over accelerations, velocities and displacements. With
a maximum horizontal and vertical displacement of
±75 mm and 50 mm, respectively, the shaking table has
about ten tons of payload capacity and a frequency range
from 0.1 Hz to 50 Hz [23].

The tests model the scale of a three-storeyed building
with the RC frame-share walls under simulated seismic
excitations, as shown in Fig. 8. The member dimensions
and detailed structural characteristics of the testing model
can be obtained from Ref. [24]. The data were acquired
simultaneously at the rate of 500 Hz from 16 channels.
Accelerometers and load cells were used to measure the

Fig. 8. Experimental setup for shaking table tests.

Fig. 9. Schematic of the location of accelerators.

Fig. 10. The acceleration records form the base (a) and the third storey (b)
of the building.

Fig. 11. Instantaneous frequency identified from wavelet transform.
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acceleration at each storey, and shear forces on the col-
umns of the first storey. Fig. 9 shows the accelerator place-
ment on each floor of the building model.

5.3. Results of earthquake simulation tests and interpretation

The base excitations were the El Centro earthquake NS
acceleration time series in 1940 and were scaled with the
increasing peak ground acceleration (PGA) being 0.2 g,
0.3 g, 0.5 g, 0.6 g, 0.8 g and 1.0 g. The tested structure
was excited by the six consecutive horizontal acceleration
processes with increasing intensities on the shaking table,
without repairing or strengthening during the acceleration
processes. The records with 0.3 g PGA from the base and
response of the third storey of the tested structure in the
X direction at location 3 (center of mass) are shown in
Fig. 10. Since the global response is mainly captured by
the lower frequency while the higher frequency tends to
capture the local response of the structure, the instanta-
neous fundamental frequency was determined by the wave-
let method that was introduced previously. It can be
observed that the instantaneous natural frequencies identi-

fied are constant for the first 2 s, then slowly decrease as a
result of the stiffness degradation, and again constant over
the last 6 s (Fig. 11).

The energy accumulation and its change rates in fre-
quency and time domain shown, respectively, in Figs. 12
and 13, offer a complete description of the energetic com-
ponents of the quake. Due to the short duration of the
earthquake process, a Morlet wavelet with central fre-
quency of f0 = 1 Hz was first applied, and a more detailed
examination of the frequency content was performed by
using f0 = 3 Hz to study the energy accumulation process.
From the change rate of the energy accumulation in the
frequency domain as shown in Fig. 12, it is evident that
the maximum change rate in the signal is constrained
between 2.0–3.1 Hz and 6.9–8.0 Hz. There is little change
in the energy accumulation within the signal beyond
16 Hz. In the time domain, it is evident from Fig. 12 that
the analysis with f0 = 1 Hz is superior in capturing many
of the individual pulses in the record to the one with
f0 = 3 Hz, though both the analyses capture the same over-
all trends. The analysis with f0 = 1 Hz indicates that most
rapid changes of the energy within the signal occur between

Fig. 12. Change of energy accumulation in frequency (a) and time domain (b).

Fig. 13. Energy accumulation in frequency (a) and time domain (b).
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0.5 s and 3 s. In the time domain, the occurrence time of
three distinct events is discernable: 1.0 s, 4.5 s and 13.2 s,
with the most rapid change in energy being associated with
the first in the series. The energy falls off very quickly fol-
lowing this flurry.

The curve of energy accumulation in the time domain is
not smooth with many small pulses due to the arrival of the
P and S waves. With the arrival of the first pulse at 1.0 s,
the energy is accumulated from 11% to 44%. The interme-
diate event at 4.5 s brings the energy level up to 66%, with
the next major event at 13.2 s, causing a jump in accumu-
lated energy from 90% to 97%. The accumulated energy
shows a gentle trend to slowly level off near 3.5 s at about
45% of the total signal energy. The minor event at 7.0 s
brings the accumulated energy to 71%, followed by the
event near 13.2 s at which the accumulated energy has
reached 97% and has been steadily ascending. The accumu-
lation of energy in the frequency domain shows that the
dominant influx of energy comes from the signals with fre-
quencies between 2.0 Hz and 5.0 Hz. At the time, the signal
energy jumps from 70% to 95%. Signals with frequencies
below 1 Hz almost have no contribution to the energy.

Comparing the energy accumulation with the change of
frequencies of the structure in Fig. 13, it can be seen that
there is an obvious delay between the frequency degrada-
tion and the energy accumulation and its change rate.
The signal frequency degradation mainly occurs between
2 s and 6 s, with a stationary trend from 2.4 s to 2.9 s; while
the energy accumulation and its change rate, as mentioned
above, mainly occur between 0.6 s and 4.5 s, with a station-
ary trend from 3.5 s to 4.2 s. There is about 1.1–1.5 s delay
between them. Although the results indicate that each of
these earthquake records and their associated time and fre-
quency characteristics depend strongly on local soil condi-
tions, and that topography should not be considered to be
representative of the complete ground motions, these
results still highlight the wavelet’s ability to uncover the
intermittent and nonlinear characteristics of the process.

6. Concluding remarks

Up to now, the wavelet transform has scarcely been
applied to structural health monitoring in civil engineering.
This study applied a wavelet approach for the detection
and assessment of progressive damage in the structural sys-
tem, and a novel method called ‘‘prediction extension” to
remedy the problem of edge effect is presented, which has
been validated using the vibration response obtained by
numerical simulation for the ASCE benchmark. The
instantaneous modal parameters for the four vibration
modes are identified, and their values are compared to
the official data. The results have shown that they are in
good agreement. And the relation between the dynamic
properties of structure and energy accumulation and its
change rates is also discussed through a shaking table
experiment.

The investigations in this paper have validated that the
wavelet method is a promising and powerful analytical tool
to identify the dynamical feature of the input and output in
both time and frequency domains.
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